首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1469篇
  免费   43篇
  国内免费   52篇
电工技术   8篇
综合类   14篇
化学工业   406篇
金属工艺   246篇
机械仪表   18篇
建筑科学   21篇
矿业工程   3篇
能源动力   228篇
轻工业   17篇
水利工程   8篇
石油天然气   3篇
无线电   190篇
一般工业技术   344篇
冶金工业   30篇
原子能技术   1篇
自动化技术   27篇
  2024年   1篇
  2023年   89篇
  2022年   44篇
  2021年   62篇
  2020年   110篇
  2019年   99篇
  2018年   41篇
  2017年   95篇
  2016年   100篇
  2015年   60篇
  2014年   103篇
  2013年   122篇
  2012年   131篇
  2011年   106篇
  2010年   52篇
  2009年   65篇
  2008年   18篇
  2007年   50篇
  2006年   64篇
  2005年   16篇
  2004年   20篇
  2003年   18篇
  2002年   23篇
  2001年   26篇
  2000年   10篇
  1999年   18篇
  1998年   5篇
  1997年   5篇
  1996年   9篇
  1995年   1篇
  1951年   1篇
排序方式: 共有1564条查询结果,搜索用时 93 毫秒
1.
We report a simple processing method to simultaneously improve the efficiency and stability of organic solar cells (OSCs). Poly(4-styrene sulfonate)-doped poly(3,4-ethylenedioxy-thiophene (PEDOT:PSS), widely used as hole transport layer (HTL) in OSCs, tends to accelerate the degradation of devices because of its hygroscopic and acidic properties. In this regard, we have modified PEDOT:PSS to reduce its hygroscopic and acidic properties through a condensation reaction between PEDOT:PSS and poly(ethylene glycol) methyl ether (PEGME) in order to improve the efficiency and stability of OSCs. As a result, the power conversion efficiency (PCE) increased by 21%, from 2.57% up to 3.11%. A better energy level alignment by the reduced work function of the modified PEDOT:PSS with a highest occupied molecular orbital (HOMO) level of poly(3-hexylthiophene-2,5-diyl) (P3HT) is considered the origin of the improved the efficiency. The half-life of OSCs with PEDOT:PSS modified with PEGME buffer layer also increased up to 3.5 times compared to that of devices with pristine PEDOT:PSS buffer layer.  相似文献   
2.
The electromagnetic shielding effectiveness of kenaf fiber based composites with different iron oxide impregnation levels was investigated. The kenaf fibers were retted for removing the lignin and extractives from the fibers and magnetized. Using the unsaturated polyester and the magnetized fibers, kenaf fiber based composites were manufactured by the compression molding process. The transmission energies of the composites were characterized when the composite samples were exposed under the irradiation of electromagnetic (EM) wave with a variable frequency from 9 GHz to 11 GHz. Using the Scanning Electron Microscope (SEM), the iron oxide nanoparticles were observed on the surfaces and inside the micropore structures of single fibers. As the Fe content increased from 0% to 6.8%, 15.9% and 18.0%, the total surface free energy of kenaf fibers with the magnetizing treatments increased from 44.8 mJ/m2 to 46.1 mJ/m2, 48.8 mJ/m2 and 53.0 mJ/m2, respectively, while the modulus of elasticity reduced from 2875 MPa to 2729 MPa, 2487 MPa and 2007 MPa, respectively. Meanwhile, the shielding effectiveness was increased from 30–50% to 60–70%, 65–75% and 70–80%, respectively.  相似文献   
3.
A novel multichannel reactor with a bifurcation inlet manifold, a rectangular outlet manifold, and sixteen parallel minichannels with commercial CuO/ZnO/Al2O3 catalyst for methanol steam reforming was numerically investigated in this paper. A three-dimensional numerical model was established to study the heat and mass transfer characteristics as well as the chemical reaction rates. The numerical model adopted the triple rate kinetic model of methanol steam reforming which can accurately calculate the consumption and generation of each species in the reactor. The effects of steam to carbon molar ratio, weight hourly space velocity, operating temperature and catalyst layer thickness on the methanol steam reforming performance were evaluated and discussed. The distributions of temperature, velocity, species concentration, and reaction rates in the reactor were obtained and analyzed to explain the mechanisms of different effects. It is suggested that the operating temperature of 548 K, steam to carbon ratio of 1.3, and weight hourly space velocity of 0.67 h−1 are recommended operating conditions for methanol steam reforming by the novel multichannel reactor with catalyst fully packed in the parallel minichannels.  相似文献   
4.
The development of high-performance electrocatalysts for methanol oxidation is an urgent task to enhance the efficiency of direct methanol fuel cells. We report a simple and controllable method to fabricate Pt-decorated TiN electrocatalysts using self-terminated electrodeposition at room temperature and ambient pressure. Under optimized deposition parameters such as electrolyte pH, TiN substrate pretreatment, and pulsed deposition potential, quenching of the Pt electrodeposition facilitates obtaining an extremely low Pt mass loading (0.93 μg/cm2) on the TiN substrate. Repeated deposition potential pulses enable a gradual increase in Pt loading, with a precise control of the loaded Pt mass. Maximum intrinsic and mass activities for the methanol oxidation reaction are achieved for the catalyst with a Pt loading mass of 55.0 μg/cm2, prepared by 20 deposition pulses. The maximum intrinsic activity achieved with the Pt-decorated TiN electrocatalyst is five times higher than that obtained with bulk Pt. The present results thus provide a facile method for the fabrication of cost-effective electrocatalysts.  相似文献   
5.
Efficient and fully solution-processed blue organic light-emitting diodes (OLEDs) based on fluorescent small-molecule and methanol/water soluble conjugated polymer as electron-injection material are reported. The emitting layer is 3,6-bis(9,9,9′,9′-tetrakis (6-(9H-carbazol-9-yl)hexyl)-9H,9′H-[2,2′-bifluoren]-7-yl)dib-nzo[b, d]thiophene 5, 5-dioxide (OCSoC) with a blue-fluorescent small-molecule, and a methanol/water soluble polymer poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl-fluorene)] (PFN) acted as electron-injection layer (EIL). All the organic layers are spin-coated from solution. The multilayer device structure with emitting layer/electron-injection layer is achieved by solution-processed method without the dissolution problem between layers. The performances of the devices show that the maximum luminous efficiency of the multilayer device is increased about 43%, compared to the single-layer device. PFN acting as the EIL material plays a key role in the improvement of the device performance when used in solution-processed small-molecule OLEDs.  相似文献   
6.
Greenish yellow organic light-emitting diodes (GYOLEDs) have steadily attracted researcher's attention since they are important to our life. However, their performance significantly lags behind compared with the three primary colors based OLEDs. Herein, for the first time, an ideal host-guest system has been demonstrated to accomplish high-performance phosphorescent GYOLEDs, where the guest concentration is as low as 2%. The GYOLED exhibits a forward-viewing power efficiency of 57.0 lm/W at 1000 cd/m2, which is the highest among GYOLEDs. Besides, extremely low efficiency roll-off and voltages are achieved. The origin of the high performance is unveiled and it is found that the combined mechanisms of host-guest energy transfer and direct exciton formation on the guest are effective to furnish the greenish yellow emission. Then, by dint of this ideal host-guest system, a simplified but high-performance hybrid white OLED (WOLED) has been developed. The WOLED can exhibit an ultrahigh color rendering index (CRI) of 92, a maximum total efficiency of 27.5 lm/W and a low turn-on voltage of 2.5 V (1 cd/m2), unlocking a novel avenue to simultaneously achieve simplified structure, ultrahigh CRI (>90), high efficiency and low voltage.  相似文献   
7.
This paper discusses the effects of the grinding-induced cyclic heating on the properties of the hardened layer in a plunge cylindrical grinding process on the high strength steel EN26. It was found that a multi-pass grinding brings about a uniform and continuous hardened layer along the circumference of the cylindrical workpiece. An increase of the number of grinding passes, leads to a thicker layer of hardening, a larger compressive residual stress and a deeper plastic deformation zone. Within the plastic deformation zone, the martensitic grains are refined by the thermo-mechanical loading, giving rise to a hardness of 12.5% higher than that from a conventional martensitic transformation. The coupled effects of heat accumulation and wheel wear in the multi-pass grinding are the main causes for the thickening of the hardened layer. A too small infeed per workpiece revolution would result in insufficient grinding heat, and in turn, bring about an undesirable tempered hardened layer and a reduction of its hardness.  相似文献   
8.
Over the last decade, narrow-band emitters have been recognized as key enablers for light emitting diodes (LEDs) backlights in liquid-crystal displays (LCDs) by competing with other display technologies. Today, efforts have been devoted to the exploration of narrow-band green/red luminescent materials with high quantum efficiency and excellent stability to optimize the performance of LED backlights. This review first presents an overview of the significant progress made in the development of narrow-band emitters used in LED backlights for LCDs with the emphasis on the versatile materials databases from doped phosphors to luminescent II–VI, III-V semiconductor quantum dots, and the recent halide perovskites nanocrystals and bulk metal halides. Subsequently, the correlation of structure-luminescence properties, and the device performance optimization of these emitters have been analyzed. The focus is placed on summarizing and comparing the remarkable examples of outdated and new narrow-band luminescent materials as potential candidates in LED backlights. Finally, the outlooks and challenges in discovering new narrow-band emitters have been proposed.  相似文献   
9.
10.
In order to analyze the effect of an epoxidized natural rubber (ENR) and filler treatment on the morphology and behavior of natural rubber (NR) nanocomposites, blends of these polymers have been prepared. The nature and extent of the clay dispersions in the filled samples were evaluated by X-ray diffraction. In the presence of ENR, an exfoliated structure was obtained which suggests that enough rubbery polymer was incorporated into the interlayer spacing. The effect of clay in rubber compounds was analyzed through rheological, mechanical and swelling characterization. A sensible improvement in the nanocomposite properties was observed by the addition of organoclay. It has been deduced that the properties of the compounds strongly depend on the extent of the silicate nanolayers dispersion into the rubber matrices as well as on the organoclay type and elastomer compatibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号